

Supplementary Fig. 1 Begg's funnel plot evaluating the publication bias. ES, economic status.

Supplementary Table S1 Quality assessment tool (modified for the study)

Quality assessme	ent checklist for s	elected studies ^a	
1. Was the sam	pling method rep	resentative of the target population?	
	Α.	Nonprobability sampling (including: purposive, quota, convenience and snowball sampling)	0
	В.	Probability sampling (including: systematic recruitment, simple random)	1
2. Was sample	size statistically d	etermined and/or adequately powered?	
	A.	No	0
	B.	Yes	1
3. Was eligibilit	ty criterion clearly	defined?	
	A.	No	0
	В.	Yes	1
4. Was the diag	gnosis of parasitic	infection objective?	
	A.	By history or indirect evidence evaluation solely	0
	В.	By laboratory test	1
5. Were outcor	nes measures clea	orly defined and assessed (what all parasites were obtained)?	
	A.	No	0
	В.	Yes	1
	stical methods co ing the association	ntrol for confounding factors (e.g., stratification/matching adjustment) ns?	
	A.	No	0
	B.	Yes	1
Scoring metho	d:		
Grading	5 or 6 out of 6	3 or 4 out of 6	0,1 or 2 out of 6
Risk of bias	Low	Medium	High
Study quality	Good	Satisfactory	Poor

^aAdapted from: Wong WC, Cheung CS, Hart GJ. Development of a quality assessment tool for systematic reviews of observational studies (QATSO) of HIV prevalence in men having sex with men and associated risk behaviours. *Emerg Themes Epidemiol* 2008;5:23.

Supplementary Table S2 Search strategy used and results extracted

Search	Keywords	Date	Embase	Scopus	PubMed/Medline
#5	#1 AND #2 AND #3 AND #4	16-Feb-21	574	293	520
#4	"india"/exp OR india OR "indian"/exp OR indian	16-Feb-21	1198648	7,69,433	
#3	"prevalence"/exp OR prevalence OR "risk factor"/exp OR "risk factor" OR (("risk"/exp OR risk) AND factor) OR "epidemiology"/exp OR epidemiology OR predispose OR "causal factor" OR (causal AND factor)	16-Feb-21	5632106	32,34,351	5290969
#2	"pediatric"/exp OR pediatric OR "child"/exp OR child OR kid OR "baby"/exp OR baby	16-Feb-21	3769433	33,86,511	3483579
#1	soil-transmitted helminth OR ("soil transmitted" AND ("helminth"/exp OR helminth)) OR "helminth"/exp OR helminth OR "ascaris"/exp OR ascaris OR "trichuris"/exp OR trichuris OR "hookworm"/exp OR hookworm	16-Feb-21	184683	57,211	149187

Supplementary Table S3 Quality assessment of studies selected for the review

Sl. no	Author/year	Quality score 1	Quality score 2	Quality score 3	Quality score 4	Quality score 5	Quality score 6	Total
1	Narain et al/2000 ²⁵	0	0	1	1	1	1	4
2	Subba and Singh/2020 ¹²	0	0	1	1	1	0	3
3	Devi/2009 ¹⁵	1	0	1	1	1	0	4
4	Wani and Ahmad/2009 ²⁶	0	0	1	1	1	0	3
5	Wani and Amin/2016 ²⁷	0	0	1	1	1	0	3
6	Wani et al/2008 (a) ²⁸	0	0	1	1	1	0	3
7	Lone et al/2011 ²⁹	0	1	1	1	1	0	4
8	Wani et al/2007 (a) ³⁰	0	0	1	1	1	0	3
9	Wani et al/2008 (b) ³¹	1	1	1	1	1	0	5
10	Wani et al /2010 ³²	0	0	1	1	1	0	3
11	Wani et al/2007(b) ³³	0	0	1	1	1	0	3
12	Das et al/2019 ⁹	0	0	1	1	1	0	3
13	Chowdhury et al/1968 ¹⁴	0	0	1	1	1	0	3
14	Nawalinski et al/1978 ³⁴	1	1	1	1	1	0	5
15	Greenland et al/2015 ¹⁶	1	1	1	1	1	0	5
16	Mahapatra et al/2020 ¹⁷	0	1	1	1	1	0	4
17	Bora et al/2006 ³⁵	0	0	1	1	0	0	2
18	Bansal et al/2018 ¹⁸	0	1	1	1	1	0	4
19	Awasthi et al/1997 ³⁶	1	0	1	1	1	0	4
20	Ganguly et al/2017 ¹⁰	1	1	1	1	1	1	6
21	Bisht et al /2011 ³⁷	0	0	1	1	1	0	3
22	Awasthi et al/2008 ²³	1	1	1	1	1	0	5
23	Yunus et al/1979 ²⁴	0	0	1	1	1	0	3
24	Chandi et al /2018 ³⁸	0	0	1	1	1	0	3
25	Ranjan et al/2015 ³⁹	1	1	1	1	1	1	6
26	DattaBanik et al/1978 ⁴⁰	0	0	1	1	1	0	3
27	Gupta et al /2020 ¹⁹	1	1	1	1	1	1	6
28	Dhaka et al/2020 ⁴¹	1	1	1	1	1	0	5

Supplementary Table S3 (Continued)

Sl. no	Author/year	Quality score 1	Quality score 2	Quality score 3	Quality score 4	Quality score 5	Quality score 6	Total
29	Tripathi et al/2014 ⁴²	0	0	1	1	1	0	3
30	Choubisa et al/2012 ⁴³	0	0	1	1	1	0	3
31	Shobha et al/2013 ²⁰	1	0	1	1	0	0	3
32	Lakhani et al /2012 ⁴⁴	0	0	1	1	1	0	3
33	Naish et al/2004 ¹¹	0	0	1	1	1	0	3
34	Paul et al/1999 ⁴⁵	0	0	1	1	1	0	3
35	Rangaiahagari et al/2013 ⁴⁶	0	0	1	1	1	0	3
36	Aher and Kulkarni /2011 ⁴⁷	0	0	1	1	1	0	3
37	Anbumani et al/2011 ⁴⁸	0	0	1	1	1	0	3
38	Elkins /1984 ⁴⁹	1	0	1	1	1	0	4
39	Kattula et al/2014 ⁵⁰	1	1	1	1	1	1	6
40	Gopalakrishnan et al/2018 ⁵¹	0	0	1	1	1	0	3
41	Christu Rajan et al/2020 ¹³	1	1	1	1	1	1	6
42	Ragunathan et al/2010 ²¹	0	0	1	1	0	0	2
43	Golia/2014 ⁵²	0	0	1	1	1	0	3
44	Panda et al/2012 ²²	0	0	1	1	1	0	3

Supplementary Table S4 Pooled prevalence of STH in different regions of India

	Ascaris % prevalence (95% CI)	No. of studies giving the prevalence of Ascaris	Trichuris % prevalence (95% CI)	No. of studies giving the prevalence of <i>Trichuris</i>	Hookworm % prevalence (95% CI)	No. of studies giving the prevalence of hookworm
North East India	46 (44–49)	2	12 (1–34)	3	2 (1–3)	1
North India	35 (22–50)	19	14 (7–22)	15	5 (1–13)	9
Central India	8 (6–10)	2	-	-	4 (3-6)	2
East India	18 (3–42)	4	3 (1–6)	3	49 (25–74)	4
West India	3 (2-4)	4	1 (0-4)	1	1 (0-2)	3
South India	25 (9–47)	10	19 (5–38)	9	10 (4–17)	10

Abbreviations: CI, confidence interval; STH, soil-transmitted helminths.