Detection of AmpC β Lactamases in Gram-negative Bacteria

Gunjan Gupta, Vibhor Tak, Purva Mathur

Department of Laboratory Medicine, Jai Prakash Narain Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India

Address for correspondence: Dr. Purva Mathur, E-mail: purvamathur@yahoo.co.in

ABSTRACT

*Amp*C β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many *Enterobacteriaceae* and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor/β-lactam combinations. The increase in antibiotic resistance among Gram-negative bacteria is a notable example of how bacteria can procure, maintain and express new genetic information that can confer resistance to one or several antibiotics. Detection of organisms producing these enzymes can be difficult, because their presence does not always produce a resistant phenotype on conventional disc diffusion or automated susceptibility testing methods. These enzymes are often associated with potentially fatal laboratory reports of false susceptibility to β-lactams phenotypically. With the world-wide increase in the occurrence, types and rate of dissemination of these enzymes, their early detection is critical. *AmpC* β-lactamases show tremendous variation in geographic distribution. Thus, their accurate detection and characterization are important from epidemiological, clinical, laboratory, and infection control point of view. This document describes the methods for detection for *AmpC* β-lactamases, which can be adopted by routine diagnostic laboratories.

Key words: AmpC β-lactamases, disk approximation test, gram-negative bacteria, three-dimensional extract test

INTRODUCTION

Tug resistance poses a therapeutic problem not only in the hospital settings, but also in the community as most of the bacteria have acquired resistance to multiple antibiotics.^[1,2] The various mechanisms of drug resistance in Gram-negative bacteria include extended spectrum beta-lactamases (ESBL) production, *AmpC* β -lactamase production, efflux mechanism and porin deficiency. In the clinical laboratory settings, the commonly detected enzymes causing resistance are *AmpC* β -lactamases and ESBLs. Clinical relevance of *AmpC* β -lactamases lies in the fact that they confer resistance to both narrow and broad spectrum cephalosporins, beta-lactam/beta-lactamase inhibitor combinations and aztreonam.^[3]

Journal of Laboratory Physicians / Jan-Jun 2014 / Vol-6 / Issue-1

AmpC β-lactamases can be chromosomally or plasmid mediated. The plasmid mediated AmpC β-lactamases hydrolyze all β-lactam antibiotics except cefepime and carbapenems. The plasmid-mediated AmpC genes are derived from inducible chromosomal genes that have been mobilized among various organisms. The commonly reported genotypes are ACC, FOX, MOX, DHA, CMY, CIT and EBC.^[4-6] These mobilized plasmid mediated enzymes confer a resistance pattern similar to the overproduction of chromosomal AmpC β-lactamases, which also involve all β-lactam antibiotics except for carbapenems and cefepime.^[7]

Detection of *AmpC* is important to improve the clinical management of patients suffering from infections and would also provide us with sound epidemiological data. However, there are no Clinical and Laboratory Standards Institute guidelines for detection of *AmpC* mediated resistance in Gram-negative clinical isolates and hence, it usually poses a problem due to misleading results, especially so in phenotypic tests.^[8]

Personnel qualifications

The test performer should be having a diploma in laboratory technologies and preferably university graduate in biological sciences with sufficient experience.

Education and training

Personnel are required to be knowledgeable of the procedures in the microbiology laboratory. The laboratory staff should confirm that they can properly perform the procedures before commencing work. The details are given in Table 1.

PROCEDURE

Techniques to identify $AmpC \beta$ -lactamase-producing isolates are available but are still evolving and are not

Table 1: Education and training must be givenon the following topics

Potential risks to health Precautions to be taken to minimize contamination Hygiene requirement Wearing and use of protective equipment and clothing Handling of potentially infectious material Laboratory design, including airflow conditions Use of autoclave, incubators (operation, identification of malfunctions, maintenance) Good laboratory practice and good microbiological techniques Organization of work flow and procedure Waste management Importance of laboratory results for patients management Training should be given before a staff member takes up his/her post Repeat training periodically, preferably every year yet optimized for the clinical laboratory, which leads to the underestimation of these resistance mechanisms. Carbapenems can usually be used to treat infections due to *Amp*C-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).

REQUIREMENTS

The list of all the requirements are given in Table 2.

Isolates

Gram-negative bacterial isolates recovered from clinical samples.

Preparation of reagents and chemicals

- 1. 300 µg phenylboronic acid
 - Weigh 150 mg phenylboronic acid and dissolve in 10 ml sterile distilled water
 - Use it as 15 μg/μl stock
 - Store at 4°C
- 2. 0.5 M ethylenediaminetetraacetic acid (EDTA) buffer
 - Weigh 18.6 g EDTA and add distilled water to 90 ml
 - Adjust pH to 8.0
 - Add distilled water and make final volume 100 ml
 - Store at 4°C
- 3. Tris-EDTA (TE) buffer
 - 50X TE (stock solution)

Table 2: List of all the requirements for performing the test

Equipments and materials	Media	Reagents and solutions	Antibiotic disks	ATCC strains	Other material
Simple microscope	Mueller-Hinton agar	Normal saline	Cefoxitin disk (3o μg)	<i>E. coli</i> ATCC 25922	Sterile micropipette tips
Incubator set at 37°C	Blood agar	Tris-EDTA	AmpC disk (i.e., filter paper disks containing Tris-EDTA)	E. coli ATCC 11775	Sterile culture plates
Autoclave	MacConkey agar	Phenylboronic acid	Imipenem (1ο μg)	K. pneumoniae ATCC BAA 1144	Sterile swabs
Water bath	Brain heart infusion broth	DNA extraction kits	Cefoxitin (3o µg)	<i>E. cloacae</i> ATCC BAA 1143	Sterile microcentrifuge tube
Weighing balance		Molecular biology grade water	Amoxicillin-clavulanate (20/10 µg)		PCR tubes (50 µl)
Refrigerator/freezer		Absolute ethanol	Ceftazidime (30 µg)		Sterile 1.5 ml Appendorf
Micropipettes		PCR reagents			Sterile storage vials
(1000 µl, 100 µl, 20 µl and 10 µl)		Taq DNA polymerase (5 U/μl)			Forceps
Centrifuge		10X Taq buffer with KCL			Parafilm
PCR thermocycler		Tris-HCl (pH 8.4)			
Gel electrophoresis		25 mM MgCl2			
Gel Doc		DNTPS 10 mM (fermentas)			
		Agarose			
		DNA ladder 100 bp			

PCR: Polymerase chain reaction, EDTA: Ethylenediaminetetraacetic acid, DNA: Deoxyribonucleic acid, DNTPS: Deoxynucleotide triphosphate, ATCC: American type culture collection, KCL: Potassium chloride

- Weigh 121 g Tris base and dissolve in 400 ml distilled water
- Add 50 ml 0.5 M EDTA
- Add distilled water and make final volume 500 ml
- Store at 4°C
- 4. TE buffer (working)
 - Dilute 50X master stock to 1X with distilled water.
- 5. Primer reconstitution.

Primers are often shipped and received in a lyophilized state. First create a master 100X stock (for each primer and then dilute it to a 20X working stock).

Master stock, 100 µM

- 100 μM = X nmoles lyophilized primer + (X × 10 μl molecular grade H₂O)
- To determine the amount of H_2O to add to the lyophilized primer simply multiply the number of nmol of primer in the tube by 10 and that will be the amount of H_2O to add to make a 100 μ M primer stock
- Vortex tube and incubate at room temperature for 10 min.

Working stock, 20 µM

• Dilute the primer master stock in a sterile microcentrifuge tube 1:5 with molecular grade H₂O.

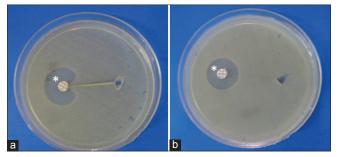
TEST PROCEDURE

What is unnecessary?

It is unnecessary to detect AmpC production in organisms that produce an inducible chromosomal AmpC β -lactamase because the organism identification is indicative of AmpC production; i.e. 100% isolates of *Enterobacter cloacae*, *Enterobacter aerogenes*, *Citrobacter freundii*, *Serratia marcescens*, *Providencia* sp., *Morganella morganii*, *Hafnia alvei*, *Aeromonas* sp., and *P. aeruginosa* can be assumed to be *AmpC* producers. Detection of an *AmpC* β -lactamase in *Klebsiella* sp., *Citrobacter koseri* or *Proteus mirabilis* is confirmatory for plasmid-mediated *AmpC* β -lactamases.^[9,10]

Screening

- i. Requirement
 - Test organism
 - Normal saline
 - Blood agar plates
 - Mueller-Hinton agar (MHA) plates
 - 30-µg cefoxitin disk
- ii. Procedure
 - Make 0.5 McFarland bacterial suspension in

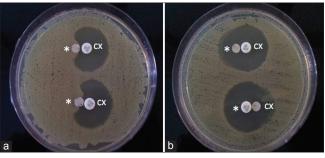

normal saline prepared from an overnight blood agar plate

- Inoculate surface of MHA plate with this suspension by swabbing
- Place 30-µg cefoxitin disk on inoculated MHA
- Invert the plate and incubate overnight at 35°C
- iii. Plate reading and interpretation
 - After overnight incubation measure zone diameter around 30-µg cefoxitin disk
 - Select the isolates with zone diameters less than 18 mm for confirmation of *Amp*C production.

Phenotypic confirmatory tests

Three-dimensional extract test

- i. Requirement
 - Test organism
 - Escherichia coli ATCC 25922 or E. coli ATCC 11775
 - Normal saline
 - Blood agar plates
 - MHA plates
 - 12 ml brain heart infusion (BHI) broth
 - 30-µg cefoxitin disk
 - Sterile blade
- ii. Procedure
 - Prepare 0.5 McFarland bacterial suspension from an overnight blood agar plate
 - Inoculate 12 ml BHI broth with 50 µl of 0.5 McFarland bacterial suspension and incubate for 4 h at 37°C
 - Concentrate cells by centrifugation and freeze-thaw 5 times to prepare crude enzyme
 - Prepare 0.5 McFarland bacterial suspension using one of two *E. coli* ATCC 25922 or ATCC 11775 and inoculate surface of MHA plate by using this suspension
 - Place 30-µg cefoxitin disk on the inoculated agar plate
 - With a sterile scalpel blade, cut a slit beginning 5 mm from the edge of the disk in an outward radial direction
 - By using a pipette, dispense 25-30 µl of enzyme preparation into the slit, beginning near the disk and moving outward, avoiding slit overfill
 - Incubate inoculated media overnight at 37°C
- iii. Plate reading and interpretation
 - After overnight incubation check the enhanced growth of the surface organism at the point where the slit intersected
 - If there is a zone of inhibition of surface organism, the test is positive three-dimensional test [Figure 1].


Figure 1: Representation of three dimensional extract test. (a) Zone of inhibition showing positive test, (b) no zone of inhibition showing negative test. *30 µg cefoxitin disk

AmpC disk test

- i. Requirements
 - *Amp*C disks (filter paper disks containing TE)
 - 30 µg cefoxitin disk
 - Blood agar plates
 - MHA plates
 - Test organisms
 - E. coli ATCC 25922
 - Normal saline
- ii. Procedure
 - Prepare 0.5 McFarland bacterial suspension of *E. coli* ATCC 25922
 - Inoculate surface of MHA plate using this suspension as per standard disk diffusion method
 - Immediately prior to use, rehydrate AmpC disk with 20 µl of saline and several colonies of each test organism apply to a disk
 - Place a 30 µg cefoxitin disk on the inoculated surface of the MHA
 - Place inoculated *Amp*C disk almost touching the antibiotic disk with the inoculated disk face in contact with the agar surface
 - Invert the plate and incubate overnight at 35°C in ambient air
- iii. Plate reading and interpretation
 - After overnight incubation, examine the plate for either an indentation or a flattening of the zone of inhibition
 - If there is any zone of inhibition, it indicates enzymatic inactivation of cefoxitin (positive result)
 - If no zone inhibition, indicates no significant inactivation of cefoxitin (negative result) [Figure 2].

Boronic acid disk test method

- i. Requirements
 - Test organism
 - 30 µg cefoxitin disk
 - Phenylboronic acid

Figure 2: Representation of *AmpC* disk test. (a) Zone of inhibition showing positive test results, (b) no zone of inhibition showing negative test results, *AmpC disks (filter paper containing tris-EDTA), CX: 30µg cefoxifin disks

MHA plates.

ii. Procedure

- Prepare 0.5 McFarland bacterial suspension from an overnight blood agar plate
- Inoculate surface of MHA plate using this suspension as per standard disk diffusion method
- Place a 30 μ g cefoxitin disk on the inoculated surface of the MHA
- Using sterile tips, dispense 20 µl of 15 µg/ml phenylboronic acid onto the disk
- Let the disk absorb it
- Invert the plate and incubate overnight at 35°C.
- iii. Plate reading and interpretation
 - After overnight incubation, compare the zone diameter around the antibiotic disk with added boronic acid and the antibiotic-containing disk alone
 - An organism that demonstrates a defined increase (≥5-mm) in zone diameter around the antibiotic disk with added boronic acid consider to be an *Amp*C producer [Figure 3].^[5]

Disk approximation test

- i. Requirements
 - Test organism
 - Normal saline
 - 10 µg imipenem disk
 - 30 µg cefoxitin disk
 - 20/10 µg amoxicillin-clavulanate disk
 - 30 µg ceftazidime disk
 - MHA Plates
- ii. Procedure
 - Prepare 0.5 McFarland bacterial suspension from an overnight blood agar plate
 - Inoculate surface of MHA plate using this suspension as per standard disk
 - diffusion method

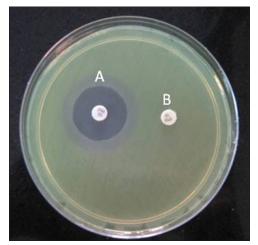
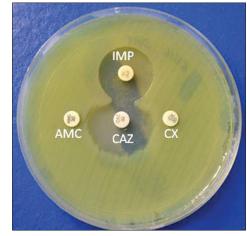


Figure 3: Representation of boronic acid disk test. A: $30 \ \mu g$ cefoxitin disk supplemented with $300 \ \mu g$ of phenyl boronic acid. B: $30 \ \mu g$ cofoxitin disk alone


- Place a 30 µg ceftazidime disk at the center on the plate
- Place 10 µg imipenem, 30 µg cefoxitin, and 20/10 µg amoxicillin-clavulanate disks at a distance of 20 mm from ceftazidime disk
- Invert the plate and incubate overnight at 35°C
- iii. Plate reading and interpretation
 - After overnight incubation, examine the plate for any obvious blunting or flattening of the zone of inhibition between the ceftazidime disk and the inducing substrates (imipenem, cefoxitin and amoxicillin-clavulanate disk)
 - If there is any blunting or flattening of the zone, consider as a positive result for *Amp*C production [Figure 4].

Multiplex polymerase chain reaction for plasmid mediated AmpC genes

Phenotypic tests do not differentiate between chromosomal and plasmid mediated $AmpC \beta$ -lactamases. Plasmid-mediated $AmpC \beta$ -lactamases are most accurately detected with the multiplex AmpC PCR test.

Preparation of template deoxyribonucleic acid (DNA)

- i. Requirements
 - Test organism
 - Molecular biology grade water
 - Microcentrifuge tubes
 - Absolute ethanol
 - DNA extraction kit
- ii. Procedure
 - Inoculate a single colony of each organism into 5 ml of Luria-Bertani broth and incubate for 20 h

Figure 4: Representation of disk approximation test. Flattening of zone of ceftazidime toward imipenem disk (inducing substrate) showing positive result. IMP: Imipenem (10 μg), CAZ: Ceftazidime (10 μg), AMC: Amoxillin-clavulanate (20/10 μg)

at 37°C with shaking

- Harvest cells from 1.5 ml of the overnight culture by centrifugation at $10,000 \times g$ for 5 min
- Discard supernatant, re-suspend the pellet in 500 μl of distilled water
- Extract total DNA by using DNA extraction kit according to manufacturer's instructions
- Quantify total DNA prior to the multiplex PCR using spectrophotometer

Multiplex PCR

- i. Requirements
 - 0.5-ml thin-walled PCR tubes
 - Molecular biology grade water
 - Taq DNA polymerase $(5U/\mu l)$
 - 10X Taq buffer with KCL
 - Tris-HCl (pH 8.4)
 - 25 mM MgCl₂
 - DNTP_s 10Mm
- ii. Procedure
 - Make a master mix containing 20 mM Tris-HCl (pH 8.4); 50 mM KCl; 0.2 mM each dNTPs; 1.5 mM MgCl2; 0.6 µM primers MOXMF, MOXMR, CITMF, CITMR, DHAMF, and DHAMR; 0.5 µM primers ACCMF, ACCMR, EBCMF, and EBCMR; 0.4 µM primers FOXMF and FOXMR; and 1.25 U of Taq DNA polymerase. Add 2 µl DNA template. The list of all the primers are given in Table 3.
 - Set the PCR program on an initial denaturation step at 94°C for 3 min, followed by 25 cycles of DNA denaturation at 94°C for 30s, primer annealing at 64°C for 30s, and primer extension at 72°C for 1 min. After the last cycle, a final

Table 3:	Primers	for	amplification	of	AmpC
denes					

	yenes			
	Target (s)	Primer Sequence (5' to 3')		Expected amplicon size (bp)
	MOX-1, MOX-2,	MOXMF	GCT GCT CAA GGA GCA CAG GAT	520
	CMY-1, CMY-8 TO CMY-11	MOXMAR	CAC ATT GAC ATA GGT GTG GTG C	
	LAT-1 TO LAT-4,	CITMF	TGG CCA GAA CTG ACA GGC AAA	462
	CMY-2 to CMY-7, BIL-1	CITMR	TTT CTC CTG AAC GTG GCT GGC	
	DHA-1, DHA-2	DHAMF	AAC TTT CAC AGG TGT GCT GGG T	405
		DHAMR	CCG TAC GCA TAC TGG CTT TGC	
	ACC	ACCMF	AAC AGC CTC AGC AGC CGG TTA	346
		ACCMR	TTC GCC GCA ATC ATC CCT AGC	
	MIR-1T ACT-1	EBCMF	TCG GTA AAG CCG ATG TTG CGG	302
		EBCMR	CTT CCA CTG CGG CTG CCA GTT	
	FOX-1TO FOX-5B	FOXMF	AAC ATG GGG TAT CAG GGA GAT G	190
_		FOXMR	CAA AGC GCG TAA CCG GAT TGG	

extension step at 72°C for 7 min

• Set the tube in the PCR machine and run the program.

Electrophoresis

- i. Requirements
 - Agarose
 - Ethidium bromide
 - Loading die
 - 100-bp DNA ladder
- ii. Procedure
 - Prepare 2% agarose gel in 1X TE buffer
 - Analyze 5 µl PCR product mixed with 1 µl 6X loading die
 - Use 100-bp DNA ladder as a marker
 - Stain gel with ethidium bromide $(10 \ \mu g/ml)$ and analyze the presence of bands in ultraviolet transilluminator
 - Use the PCR mixtures with the addition of water in place of template DNA as negative control.

Plate disposal

• Keep all culture plates sealed inside blue plastic

bags and seal in an autoclave bag

- Autoclave at 121°C for 30 min
- Discard the sealed sterilized bags in the site designed for this purpose.

ACKNOWLEDGMENT

We acknowledge the financial support of ICMR for the performance of this study.

REFERENCES

- Kaurthe J. Increasing antimicrobial resistance and narrowing therapeutics in typhoidal salmonellae. J Clin Diagn Res 2013;7:576-9.
- Laxminarayan R, Klugman KP. Communicating trends in resistance using a drug resistance index. BMJ Open 2011;1:e000135.
- Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 2010;23:160-201.
- Hanson ND. AmpC beta-lactamases: What do we need to know for the future? J Antimicrob Chemother 2003;52:2-4.
- Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated *AmpC* beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002;40:2153-62.
- Papanicolaou GA, Medeiros AA, Jacoby GA. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino-and alpha-methoxy beta-lactams in clinical isolates of *Klebsiella pneumoniae*. Antimicrob Agents Chemother 1990;34:2200-9.
- Mirelis B, Rivera A, Miró E, Mesa RJ, Navarro F, Coll P. A simple phenotypic method for differentiation between acquired and chromosomal *AmpC* beta-lactamases in *Escherichia coli*. Enferm Infecc Microbiol Clin 2006;24:370-2.
- Handa D, Pandey A, Asthana AK, Rawat A, Handa S, Thakuria B. Evaluation of phenotypic tests for the detection of *AmpC* beta-lactamase in clinical isolates of *Escherichia coli*. Indian J Pathol Microbiol 2013;56:135-8.
- Performance Standards for Antimicrobial Susceptibility Testing, 20th Informational Supplement. M100-S 21. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.
- 10. Thomson KS. Extended-spectrum-beta-lactamase, *AmpC*, and Carbapenemase issues. J Clin Microbiol 2010;48:1019-25

How to cite this article: Gupta G, Tak V, Mathur P. Detection of AmpC β lactamases in gram-negative bacteria. J Lab Physicians 2014;6:1-6. Source of Support: We acknowledge the financial support of ICMR for the performance of this study. Conflict of Interest: None declared.